On Generalized Gaussian Free Fields and Stochastic Homogenization
نویسندگان
چکیده
We study a generalization of the notion of Gaussian free field (GFF). Although the extension seems minor, we first show that a generalized GFF does not satisfy the spatial Markov property, unless it is a classical GFF. In stochastic homogenization, the scaling limit of the corrector is a possibly generalized GFF described in terms of an “effective fluctuation tensor” that we denote by Q. We prove an expansion of Q in the regime of small ellipticity ratio. This expansion shows that the scaling limit of the corrector is not necessarily a classical GFF, and in particular does not necessarily satisfy the Markov property. MSC 2010: 60G60, 35R60, 35B27.
منابع مشابه
Scaling Limit of Fluctuations in Stochastic Homogenization
We investigate the global fluctuations of solutions to elliptic equations with random coefficients in the discrete setting. In dimension d ⩾ 3 and for i.i.d. coefficients, we show that after a suitable scaling, these fluctuations converge to a Gaussian field that locally resembles a (generalized) Gaussian free field. The paper begins with a heuristic derivation of the result, which can be read ...
متن کاملA Free Energy Model for Hysteresis in Ferroelectric Materials
This paper provides a theory for quantifying the hysteresis and constitutive nonlinearities inherent to piezoceramic compounds through a combination of free energy analysis and stochastic homogenization techniques. In the first step of the model development, Helmholtz and Gibbs free energy relations are constructed at the lattice or domain level to quantify the relation between the field and po...
متن کاملGaussian Limit for Determinantal Random Point Fields
We prove that, under fairly general conditions, properly rescaled determinantal random point field converges to a generalized Gaussian random process.
متن کاملHomogenization with Large Spatial Random Potential
We consider the homogenization of parabolic equations with large spatiallydependent potentials modeled as Gaussian random fields. We derive the homogenized equations in the limit of vanishing correlation length of the random potential. We characterize the leading effect in the random fluctuations and show that their spatial moments converge in law to Gaussian random variables. Both results hold...
متن کاملA Central Limit Theorem for Fluctuations in 1d Stochastic Homogenization
In this paper, we analyze the random fluctuations in a 1D stochastic homogenization problem and prove a central limit theorem: the first order fluctuations is described by a Gaussian process that solves an SPDE with an additive spatial white noise. Using a probabilistic approach, we obtain a precise error decomposition up to the first order, which also helps to decompose the limiting Gaussian p...
متن کامل